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Abstract

The Sonoma sensor, developed at Lawrence Liver-
more National Laboratory, is an electro–optical (EO)
sensor composed of a tiled arrangement of cameras,
where each camera sends 20 megabytes (MB) of raw
data per frame. Depending on the sensor configura-
tion, each sensor image, in aggregate, can total up
to 320 MB. I discuss here the design and implemen-
tation of a high–speed entropy coder utilizing the
Lead–1 encoding method, intended to quickly and
losslessly compress sensor data before it is written
to storage. More sophisticated (and slower) com-
pression techniques may be performed off–line. The
coder, favoring speed over coding efficiency, is sim-
ple in principle and tiny in practice: the amount of al-
located memory required by the coder can be as small
as 26 bytes. On a 2.7 GHz PowerMac G5 this coder
is capable of encoding sensor data at a rate of 163
megabytes per second. The overall compression rate
is better than that of BZIP2, GZIP, and a range coder,
and the total execution speed is superior.

1 Introduction

The Sonoma Persistent Surveillance System consists
in part of an EO sensor composed of a tiled arrange-
ment of 16 cameras, where each camera image is 20
MB in size, and therefore each sensor image is 320
MB in size. The sensor is typically triggered at 2
Hz (one frame every 500 ms), yielding a throughput
of 640 MB/sec. Currently, for research purposes all
sensor data needs to be stored without loss. If com-
pression is used, it must take place in less than 500
ms.

In this report I describe the design of an entropy
coder implemented for the purpose of archiving in-
dividual camera feeds in real–time. The coder is de-
signed on the premise that for greatest speed the en-

coding process should consist only of simple opera-
tions that as much as possible map to hardware in-
structions (additions, bit shifts, etc.), and all infor-
mation required for encoding (variables, tables, etc.)
should reside as close to the CPU as possible, and
preferably on it. The number of symbols to encode
is reduced by a method called Lead–1 encoding; this
results in a reduction in memory required for storing
code tables. By further leveraging a single hardware
instruction present on the PowerPC architecture the
total amount of memory required can be reduced to
26 bytes.

Most sophisticated entropy coding techniques are
comparatively slow. That is, their execution time
is not always adequate for quickly encoding large
amounts of data1. Certain coders, such as arithmetic
[4, 2, 10] and range coders [5], recompute their codes
fairly frequently, sometimes as much as once per
symbol encoded.

For speed the coder described here uses static
codes, recomputed infrequently and provided via
table–lookup. The rationale for using static code ta-
bles is twofold: First, although current CPU speeds
allow many things to be obtained by computation
faster than by table lookup, my own tests indicate that
entropy codes do not necessarily fall into this cate-
gory. Second, in persistent surveillance applications
the system is taking many images of what is essen-
tially the same scene. It is reasonable to assume that
the distribution of pixel values will not differ much
between frames, and that a set of code tables gener-
ated with one frame will likely be effective with an-
other.

I choose to use canonical codes. Canonical codes
are equivalent to Huffman codes in terms of coding
efficiency, but methods exist to create them quickly
and with a minimal use of resources. The coder de-

1This is the driving reason behind the development of modern
hardware–based compression.
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scribed here generates codes according to the method
presented in [6]. Although Canonical/Huffman codes
have a lower coding efficiency when compared to
other coding techniques, their simplicity allows them
to be used in a very optimized fashion.

2 Prior Work
There is extensive prior work in developing entropy
coders for various purposes, so much so that it is
impossible to present a complete review here. As
it relates to wide–area surveillance, experience is
that most methods currently involve using sophisti-
cated industry–standard methods (e.g. JPEG 2000,
MPEG4, etc.) and getting them to operate in real–
time, frequently by leveraging dedicated, custom
hardware.

The work of Burtscher et al [1] is related to the
coder described here. Burtscher’s work involves the
use of Lead–1 encoding to rapidly encode double–
precision floating–point data as it is generated by a
scientific computation. At the heart of the method is
the use of a value predictor, whose design is based
on results of research into hardware routines devel-
oped to speed program execution by predicting com-
putation outcomes. In their work a value predictor is
used to predict a floating–point value, and the XOR
is taken of the predicted and actual values. If the pre-
diction is reasonably close, the leading bits of the
coefficient are zero. The number of leading zeros
are counted and stored, and everything following the
leading zeros is passed along unchanged. On their
test data sets they report average higher compression
rates than coders such as BZIP2 and GZIP, and en-
coding speed 8 to 300 times faster.

In their work there is no explicit use of an entropy
code (although it is certainly possible to do so). For
speed they instead use a fixed-length counter to store
the number of leading zeros in each coefficient. The
effectiveness of the method rests on the effectiveness
of the predictor used.

3 The Problem Size Problem
The coder described here uses table lookups. The
weakness in encoding and decoding via table–lookup
is the method’s sensitivity to problem size: a single
table entry is needed for every symbol appearing in
the data being compressed. If n–bit numbers are be-
ing encoded it should be obvious that the encoding
table will require N = 2n entries. With Canoni-
cal/Huffman codes, in the worst case the longest code
will be L = 2n − 1 bits in length. In this extreme

case, encoding 8–bit values can require a decoding
table with 2255 entries. In practice it is extremely
rare to have such a case, but even smaller values of
L, such as L = 15 can make decoding tables unde-
sirably large.

In the case of Sonoma, each pixel is 16 bits wide,
containing 12 bits of actual data. There are poten-
tially 212 = 4096 different symbols. The decod-
ing table may potentially require 24095 entries in the
worst case. To help ensure a fast execution time table
sizes must be smaller, and to guarantee that the code
tables are small the problem size must be reduced.
This is done via Lead–1 Encoding.

4 Lead–1 Encoding

Lead–1 encoding [3] comes from the observation
that after an entropy–reducing transformation (e.g.
wavelet, delta, etc.), where the resulting coefficient
histogram is centered about zero, most of the redun-
dancy in each coefficient is in the position of the co-
efficient’s leading 1. After the leading 1, the distri-
bution of bits tends to be fairly random. Encoding
the position of the leading 1, and passing along un-
changed what remains, simplifies the encoding pro-
cess. Lead–1 encoding also drastically reduces, by
several orders of magnitude, the amount of informa-
tion needed to encode the coefficients. In the case of
12–bit coefficients, instead of 4096 possible symbols,
there are 13: one each for each leading–1 position,
plus one for the zero coefficient. The encoding table
therefore has thirteen 2–byte entries, where each en-
try give the length of the codeword and the codeword
itself. The total encoding table size is 26 bytes—
a vast improvement over what would have been re-
quired to encode 4096 symbols. The decoding table
now in the worst case requires 4096 8–bit entries, or
4 kilobytes.

Lead–1 encoding requires that the data to be en-
coded first be transformed via an entropy–reducing
transformation. Virtually any type of transform may
be used, from simple delta–transforms to wavelets.
However, for best performance the following two
conditions must be met: the transform must produce
integer–valued coefficients, and the coefficient his-
togram must be centered about zero. If the transfor-
mation does not naturally produce a histogram cen-
tered about zero the coefficients can of course be bi-
ased.
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4.1 The Encoding Process

The conceptual encoding process is straightforward.
Given a coefficient, take its magnitude (absolute
value) and determine the coefficient’s leading–1 po-
sition. A code corresponding to this position is ob-
tained via table–lookup, and placed on an output reg-
ister. If the magnitude is nonzero, place a sign bit on
the output register. Then place the pass bits. Pass bits
are everything which follows the leading 1. As an ex-
ample, consider the coefficients 42 and -42. In 16–bit
binary, their representation is:

42: 00000000 00101010
-42: 11111111 11010110

Take the absolute value of each, and determine the
leading 1 position—6, in this case. Obtain the code
for a leading–1 position of 6 (say, 0010), and place
it on the output register. Place a sign bit on the reg-
ister indicating the coefficient’s sign. Then take the
lower 5 (leading–1 position minus 1) bits of the coef-
ficient magnitude and place them on the output regis-
ter. Thus, for 42 and -42, their encoded output would
look like this:

42: 0010 0 01010
-42: 0010 1 01010

4.2 The Decoding Process

The decoding process is also straightforward. Given
that the longest code length is L, read the first L
values of the encoded bitstream, and use them as
an index into a table that gives the code length and
leading–1 position corresponding to that code. Refer-
encing the example above, after decoding a leading–1
position is 6, initialize a decoded value with a 1 in the
correct place:

42: 00000000 00100000
-42: 00000000 00100000

The sign bit is read next and noted. Then the pass
bits are read and the logical OR is taken with them
and the decoded value:

42: 00000000 00101010
-42: 00000000 00101010

Finally, if the sign bit indicates a negative value,
the result is negated:

42: 00000000 00101010
-42: 11111111 11010110

4.3 Determining the Leading–1 Position

The leading–1 position must be determined before it
can be encoded. One potential method of determin-
ing this is to examine each bit in a coefficient until
encountering the first 1. Depending on the coefficient
width and the CPU architecture, this may be a slow
solution, as it requires a loop with a conditional state-
ment for control. Table lookups are potentially faster.
Again, a simple way is to use the 12–bit coefficient
as an index and get a table entry. In this case the table
would require 4 kilobytes of storage (212 entries at 1
byte each). A more space–efficient way is to create a
256–entry table (8–bit index), requiring 256 bytes to-
tal. For each coefficient, if it is < 256 the coefficient
is used as an index into the table, and the leading–
1 position is returned. Otherwise the coefficient is
right–shifted 8 places, the result is used as an index,
and 8 is added to the result. Including the 26–byte
code table (described in section 4), the total amount
of allocated memory required by the code loop is now
282 bytes.

5 Optimizations

Here are some further optimizations to increase over-
all execution time. These optimizations are for our
specific application on our hardware platform. Most
of the work developing this coder was performed on
a Macintosh PowerMac G5 (IBM PowerPC 970FX
v3.1) with a 32-kilobyte L1 data cache. Under
these conditions these optimizations have given im-
proved performance. In some cases the improvement
is slight but it should be remembered that time is
extremely valuable, and so any measurable perfor-
mance gain is considered worthwhile. An implemen-
tation of this encoding method on a different com-
puter architecture or operating system will likely re-
quire additional optimizations and adjustments.

5.1 Optimizing Data Access

Instead of taking coefficients directly from the input
data stream, buffer them in a 512–byte buffer. This
buffering adds a memory copy to the coding loop, but
the copy only happens once every 256 coefficients.
The speed increase comes from a rather nice side ef-
fect of the copy: it pulls the data into cache and aligns
it in cache memory. This makes buffer access faster
than accessing the input stream directly.
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5.2 Streamlining Memory
On MacOS X, the operating system for the Power-
Mac G5, all memory is allocated in 4 kilobyte pages.
Even allocating 1 byte of storage requires a 4 kilo-
byte page. Instead of allocating memory separately
for each table or buffer, an attempted optimization
was to allocate a single block of 4 kilobytes, and par-
tition it manually. This requires one page table entry.
In practice there was no improvement in program ex-
ecution with this change.

5.3 Leveraging Hardware to Determine
Lead–1 Positions

Many CPU architectures possess a hardware instruc-
tion that, given an integer, counts the number of lead-
ing zeros in the binary representation of that inte-
ger. On the PowerPC architecture this instruction is
cntlzw. Instead of using a LUT to determine lead–1
positions, leverage the hardware instruction instead,
by means of an assembly statement placed inline in
the C code. This eliminates the need for the Lead–1
LUT, saving 256 bytes.

5.4 The Zero Short Path
The zero coefficient is a special case. Here there is
no sign bit and no pass bits. Due to the entropy–
reducing transform that precedes the encoding stage,
we expect to see a large number of zero coefficients.
This situation presents a great opportunity for further
optimizing the coding loop.

Instead of repeatedly looking up the code and code
length for the zero coefficient, store them in two vari-
ables, initialized at the start of the coding process.
During encoding, if the coefficient is detected to be
zero, the code is placed directly on the output regis-
ter, without the need for table lookups. This places a
conditional in the program’s coding loop, but elimi-
nating table lookups in this very frequent case yields
a net speed gain.

5.5 Computation of Sign and Pass Bits
When Encoding

Section 4.1 describes the creating of the sign and pass
bits. The description given there is conceptual, and
while the conceptual description can be implemented
directly, the resulting implementation will not be the
fastest.

To quickly compute the pass and sign bits at the
same time, given both the original coefficient and its
magnitude, take the most significant bit (MSB) of the

original signed coefficient and shift it down so it is in
the coefficient’s lead–1 position. Then XOR it with
the coefficient magnitude, and place the lower bits
onto the output register.

As a more concrete example, again consider the
numbers 42 and -42, as in section 4.1. In the follow-
ing examples, nPos refers to the position of the lead-
ing 1 in 42 (nPos is 6, in this case), and nMag refers
to the magnitude or absolute value of the coefficients:
42. In binary and hexadecimal representation:

42: 00000000 00101010, 0x002A
-42: 11111111 11010110, 0xFFD6

Take the MSB from the signed coefficient and shift
it down into the leading–1 position (pseudo C–code
notation):

42: (0x002A & 0x8000) >> (16 - nPos) = 0x00
-42: (0xFFD6 & 0x8000) >> (16 - nPos) = 0x20

Then XOR it with the coefficient magnitude:

42: 0x00 XOR 0x2A = 0x2A
-42: 0x20 XOR 0x2A = 0x0A

The lower nPos bits are then placed onto the out-
put register. Note that in this case, on the coded bit-
stream a sign bit of 1 indicates a positive integer, and
0 a negative one. This computation of sign and pass
bits can be done in one line of C code:

((nCoeff & 0x8000) >> (16 - nPos)) ˆ nMag;

5.6 Reconstructing the Coefficient when
Decoding

Given the encoding optimizations above, it is impor-
tant to note that in the case of a positive coefficient,
the sign and pass bits of the encoded coefficient are
exactly the same as the coefficient itself. We can use
this fact to optimize decoding.

Again referencing the example of encoding and de-
coding the numbers 42 and -42, assume the leading–1
position has already been decoded, and the sign and
pass bits remain on the input buffer:

42: 1 01010
-42: 0 01010

Create a binary mask with the value 2nPos − 1, used
to remove the sign and pass bits off the input buffer.
So, for a leading–1 position of 6 the value would be
26 − 1 = 0x3F, or 00111111. Mask off the sign and
pass bits, and initialize a decoded coefficient to their
value:

42: 00101010
-42: 00001010
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Right–shift the mask by 1, and compare the result
to the sign and pass bits:

42: (00101010 <= 00011111)
-42: (00001010 <= 00011111)

If the comparison is false, the process is finished—
the sign and pass bits are equal to the decoded coeffi-
cient, and are placed on the decoded bitstream. If the
comparison is true, place a 1 in the leading–1 position
and negate the result.

5.7 Encoding Loop Core
What follows is the code for the core of the encoding
loop. The code should be understandable, but a few
points of explanation are needed. nOutReg is a 64-
bit register that accumulates output bits as they are
generated. regtype is a type definition equivalent
to an unsigned 64–bit integer. For brevity some code
not directly related to encoding has been removed.

for (i = numCoeffs; i > 0; i--) {
nCoeff = *pIn++;
if (nCoeff != 0) {

nMag = abs(nCoeff);

// Get the coefficient’s leading
// 1 position.

#ifdef ARCH_PPC
__asm__ __volatile__("cntlzw %0, %1" :
"=r"(nPos):
"r"(nMag):"cc");
nPos = 32-nPos;

#else
if (nMag < 256)

nPos = m_pPosTab[nMag & 0xFF];
else

nPos = m_pPosTab[nMag >> 8] + 8;
#endif

// Get the 16-bit table entry and
// extract the needed information.

nTableEntry = m_pEncTab[nPos];

nCodeLen = nTableEntry & 0xF;
nCode = nTableEntry >> 4;

// Generate the pass bits
// and the sign bit.

nPass = ((nCoeff & 0x8000) >>
(16 - nPos)) ˆ nMag;

// Place code and sign/pass bits
// on output

nOutReg |= (regtype)nCode
<< nOutRegCnt;

nOutRegCnt += nCodeLen;

nOutReg |= (regtype)(nPass)

<< nOutRegCnt;
nOutRegCnt += nPos;
}
else {

// This section of code executes
// when the coefficient is a zero.
// In that case there’s no sign bit
// nor pass bits.

nOutReg |= (regtype)nZeroCode
<< nOutRegCnt;

nOutRegCnt += nZeroCodeLen;
}

} /* end for(i) */

6 Results

All tests were performed on a dual 2.7 GHz Power-
Mac G5 with 2 gigabytes of RAM, running MacOS
X, version 10.4.9. There was only one thread of ex-
ecution. The test application loads from disk a file
containing 100 image frames, where each frame is
4008 x 2672 pixels in size, with each pixel being 12
bits stored in a short integer. The total file size is ap-
proximately 2 Gigabytes. The pixels in each frame
are transformed via a simple raster–order delta trans-
form, resulting in signed coefficients. Raw data size
is therefore 20.42 MB per frame, actual data is 15.32
MB. I quote all compression rates relative to the raw
data rate.

6.1 Execution Time

Here is a comparison of execution times for a variety
of buffer sizes, while using an inline assembly (hard-
ware) instruction to determine the leading–1 position,
compared with using a lookup table to do the same.
Timings do not include disk access, and only measure
the encoding process—the transform performed prior
to encoding is not timed.

The results are given in table 1. The first thing not-
icable is that if a processor instruction is used for
determining the leading–1 position, it is better not
to explicitly buffer the input. I do not know at this
time why this is the case. The result is that when
the hardware instruction is used, only 26 bytes of al-
located memory are required for the encoder. The
second thing to note is that when buffering input a
small buffer (256 entries, or 512 bytes) is more effi-
cient than an even slightly larger one. Finally, as ex-
pected, using a hardware instruction to determine the
lead–1 position is always faster than using a lookup
table.
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Table cntlzw
Buffer Entries Time (s) Throughput Memory Time (s) Throughput Memory

None 14.59 140.0 282 12.50 163.4 26
256 14.25 143.3 794 12.80 159.6 538
512 14.76 138.4 1306 13.08 156.2 1050
768 15.03 135.9 1818 13.20 154.74 1562
1024 14.75 138.5 2330 13.20 154.74 2074
2048 14.75 138.5 4378 13.25 154.16 4122
4096 14.72 138.8 8474 13.29 153.7 8218

Table 1: Execution times for various buffer sizes, comparing the use of tables vs the hardware instruction cntlzw to
determine the leading–1 position. Throughput is measured in megabytes per second, and is based on the raw data rate.
Total allocated memory is given in bytes.

6.2 Comparison to Other Coders
The 100–frame sequence was also compressed us-
ing the standard compressors bzip2 and gzip, and the
well–known range coder by Michael Schindler [7].
These were compared to the coder described in this
report (referred to as “Lead–1”). All were timed us-
ing the command–line utility time. Results are given
in table 2. These results and those in table 1 show that
for the purpose of quickly and efficiently compress-
ing this sort of raw image data it is neither necessary
nor desirable to use a sophisticated compression tech-
nique. A well–thought–out, simple method is both
efficient and extremely fast.

7 Conclusions and Future Work
This report presented the reasoning behind and im-
plementation of a high–speed entropy coder, suit-
able for rapid lossless compression of EO sensor
data. Leveraging existing hardware capabilities,
where possible, can have a dramatic positive effect
on the the system. In this case, making a call to a
single hardware instruction increased throughput by
up to 23 megabytes per second and reduced memory
requirements 26 bytes, making the coder’s data cache
footprint truly compact. Even without the hardware
instruction, allocated memory was only 794 bytes,
which is still tiny. The coder has not yet been added
to the software processing pipeline, but it or some
other coder will likely be added in the future.

The weakness of the coder presented here is its use
of Canonical codes. Canonical codes cannot code a
symbol to less than 1 bit. This means that the coder is
incapable of encoding a 20 MB image frame to any-
thing less than 1.28 MB, or 6.25% of original size.

It is desirable to have a coder capable of less than
1 bit per symbol. There are two promising alter-
natives: coders utilizing State–Tree Codes [9], and
Length–Limited Variable–to–Variable Length Codes

[8]. These coders are simple, faster than arithmetic–
type coders, and achieve a compression rate that is
comparable to or better than arithmetic–type coders.
Future efforts will be focused on how to engineer the
coders to achieve the high throughput which we re-
quire.
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